Second Order Duality in Multiobjective Programming
نویسنده
چکیده
A nonlinear multiobjective programming problem is considered. Weak, strong and strict converse duality theorems are established under generalized second order (F, α, ρ, d)-convexity for second order Mangasarian type and general Mond-Weir type vector duals.
منابع مشابه
Optimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملDuality for the class of a multiobjective problem with support functions under $K$-$G_f$-invexity assumptions
In this article, we formulate two dual models Wolfe and Mond-Weir related to symmetric nondifferentiable multiobjective programming problems. Furthermore, weak, strong and converse duality results are established under $K$-$G_f$-invexity assumptions. Nontrivial examples have also been depicted to illustrate the theorems obtained in the paper. Results established in this paper unify...
متن کاملMond-Weir type multiobjective second-order fractional symmetric duality with (φ, ρ)-invexity
In this paper, we start our discussion with a pair of multiobjective MondWeir type second-order symmetric dual fractional programming problem and derive weak, strong and strict duality theorems under second-order (φ, ρ)-invexity assumptions.
متن کاملSecond - Order Duality for Nondifferentiable Multiobjective Programming Involving ( , Ρ ) - Univexity
The concepts of ( , ρ)-invexity have been given by Carsiti,Ferrara and Stefanescu[32]. We consider a second-order dual model associated to a multiobjective programming problem involving support functions and a weak duality result is established under appropriate second-order ( , ρ)-univexity conditions. AMS 2002 Subject Classification: 90C29, 90C30, 90C46.
متن کاملBenson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality
In this paper, we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints. We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions. We also fo...
متن کامل